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Wetting-Driven Casimir Force in Nematic Liquid Crystals
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We study the fluctuation-mediated structural interaction between identical order-inducing substrates
immersed in the isotropic phase of a liquid crystal. We show that because of the presence of substrate-
stabilized nematic wetting layers, the force due to thermal fluctuations of nematic order is repulsive
rather than attractive, which is in contrast with the standard pseudo-Casimir force between like walls.
Contrary to expectations, this interaction is characterized by the same range as the mean-field attraction.
[S0031-9007(99)08386-6]

PACS numbers: 61.30.Cz, 68.45.—v

Nowadays, it is well established that the Casimir ef-show that the phase boundary acts as an internal structural
fect—the interaction between the walls of a container inwall attracted to the nearby substrate.
duced by either quantum or thermal fluctuations within the The model system consists of isotropic phase bounded
confined medium [1]—is ubiquitous. The phenomenonby parallel plates that induce homeotropic uniaxial
is especially important in systems with long-range correlanematic order, and the resulting paranematic phase is
tions, where the force is also long range [2]. In soft mattercharacterized by a nematic wetting layer and an isotropic
physics, which covers easily deformable classical systemspre [7]. In this case, the natural representation of
long-range correlations occur in media with broken conthe orientational order parametep—an irreducible
tinuous symmetry and in critical systems. second rank tensor—is given by the tensorial base
Liquid crystals, which are characterized by orienta-To = Bn ®n — )//6,T; = (e; ® e, — e, ® €5)/+/2,
tional and in some phases also partial positional ordef_; = (e; ® e + e; ® e)/vV2, To=(e; ®n +n ®
of constituents, fall into both categories. The broken-e;)/+/2, and T_, = (e, ® n + n ® e»)/+/2, where n
symmetry long-range interaction results from fluctuationgthe director), e;, and e, form an orthonormal triad
of the average molecular orientation, position of smectigdentified bye,e.,e,, andl is the unit tensor [9]. The
layers, etc. [3,4]. Fluctuations of the degree of orientacomponent ofQ along T, is equal to the sum of the
tional order, amplitude of mass density wave, etc., howmean-field and fluctuating parts of the degree of order,
ever, induce a short-range force whose correlation lengthnd its projections ontol+; and T+, correspond to
increases in the vicinity of the corresponding phase transbiaxial and director fluctuations.
tion [5]. This in turn gives rise to an increase of the total By scaling the order parameter by the degree of order
Casimir interaction which is very prominent if the transi- in the bulk nematic phase at the clearing point, the one-
tion is continuous—and some of them are [6]. elastic-constant approximation of the Landau—de Gennes
But even discontinuous phase transitions in liquidfree energy density—the standard phenomenological
crystals are usually associated with rather small latentinodel of the transition—can be cast into a concise form
heat, and they can be made continuous by confining the L
sample by a substrate that promotes nucleation of one of f = 0 {£5200tr Q% — 2v/61tr Q@ + (tr Q%))
the phases involved. The mechanism of such wetting- )
assisted phase transitions is quite different from the bulk + VQ:VQ}, 1)
one and is characterized by a phase boundary betweevhereL is the elastic constané, is the reduced tempera-
the substrate-stabilized wetting layer and the bulk, whichure (equal to 0 at the supercooling limit and to 1 at the
advances from the wall as the transition temperature iphase transition), angly = 10 nm is the bare correlation
approached [7]. The corresponding soft mode representength [8]. To make the model amenable to further
fluctuations of position of the phase boundary [8]. analysis, the double-well Landau potential represented
In this Letter we analyze the wetting-driven pretransi-by the homogeneous part ¢f is replaced by a pair of
tional behavior of the fluctuation-induced force in liquid parabolas corresponding to harmonic expansions of the
crystals, and we find that the force is repulsive and not atfree energy density at the two minima [10]. Within
tractive as in nonwetting geometries discussed earlier [5this approximation, the paranematic phase is regarded as
Its range is identical to the range of the mean-field attracbeing divided into a nematic and an isotropic region, each
tion caused by the inhomogeneity of the ordering, which iccharacterized by a set of bulk correlation lengths. In the
also unusual: in nonwetting geometries the Casimir forceiematic region, the correlation lengths of fluctuations of
decays more rapidly than the mean-field force. We alséhe degree of order, biaxiality, and director field are given
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by o
(Eno/€0) ™2 = 301 + 1 — 80/9)\/1 — 86/9,
(Ever/€0) 2 =T +V1-2860/9), (2
and (éy.+2/0)7 2 =0,

where the subscripts refer to the tensorial base. In
the isotropic region all five modes are degenerate:
(é1/&0)72 = 0.

The equilibrium ordering consists of a mean-field part
and of thermally excited fluctuations around@,= A +
B. The mean-field partA, corresponds to the minimum z/d
of the free energy and describes the spatial variatiofg, 1. Steplike mean-field profiles of the paranematic phase
of the nematic order within the sample consisting ofcalculated within the full Landau—de Gennes expansion (solid
an ordered wetting layer and a disordered coe.is line) and its parabolic approximation (dashed line). The
determined by a single nontrivial scalar variable —thesubstrate-prescribed degree of order equals 1.1 in reduced units;

- 9 =1+ 1073, d/& = 100. Inset: A schematic representa-
degree of order—whereas the other four coefficients "ﬁon of the paranematic phase characterized by ordered wetting

A(r) = ¥7__,a;(r)T; all vanish. Because of in-plane Jayers and a disordered core.

translational invariance of the system, depends on the

transverse coordinate only, and as the walls located afplied by the Kronecker delta, nonzero only in the case
z = 0 andz = d are identical, it is symmetric and needs Of fluctuations of the degree of order.

to be calculated in only half of the slab. The parabolic Let us compare the predictions of the Landau-de

approximation of the homogeneous partfathus reads ~ Gennes expansion and its parabolic approximation. As
illustrated in Fig. 1, the agreement between the mean-field

0.3

L ) ~ profiles of the ordering is very good in the whole range
fnpa = 7{@ + énolao — ao) JH(I — 2) of applicability of the approximation (which is bounded
PN by the clearing point,dy; = 1, and the superheating
+ & agH (2 — D, () limit, 0™ = 9/8). Apart from the discontinuity of the
5 derivative ofb, at the phase boundary, the approximation
where L®/2 = —(27L/256¢0) (1 — 40/3 + 3150 gives a fair description of the normal modes. Since

JT—86/9)(1 +JT—86/972 and d =31+ the wetting-assisted critical behavior of the Casimir force
V1 — 868/9) are the free energy density and the degregs expected to be controlled by the slow modes [8],
of order in the bulk nematic phase, amdl(z) is the the quality of the approximation can be quantified by
Heaviside function. The position of the phase boundaryiheir relaxation rates. In the case of the strong-anchoring
[, is determined by the condition that the equilibriummodel of the surface interaction used here, the two
profile of ap be smooth. slow modes—soft fluctuations of the position of phase
The thermal fluctuations of the ordering(r) =  poundary and director fluctuations within the wetting

:__, bi(r)T;, are governed by their Hamiltonian, which |ayer—are underestimated by10%, which is quite

is diagonal in the tensorial base used here. Within theatisfactory.

parabolic approximation, the homogeneous part of the Having established the appropriateness of the parabolic

density of the Hamiltonian fod < z < d/2is givenby  approximation, we can calculate the interaction free en-
ergy of the fluctuations. With a piecewise homogeneous

2 . . . . .
_L -2 _ -2 B Hamiltonian, the partition function is reduced to a Gauss-
Ppa = 2 i:Z_z[fN,,-H(l O+ &THE =D ian functional integral, which can be evaluated by any of
+ Y;8(z — D]p? (4) the standard methods. We use the Green function ap-

proach, based on the local formulation of the partition
Y; = {&n3[a0 — ao(D)] + & 2ao(D)}[(dao/dz) (1]~ 610 function and frequently encountered in the theory of van
being the discontinuity of the derivative of the scalarder Waals forces [11,12]. In the strong anchoring limit,

fluctuating field; at the phase boundary, which is, ?S:Ee ;Dte;?f?“tontffeede”efgy can bed wiitten as a sum over
e Tive Tiuctuating degrees ot ifreedom,

2 ® 2 _
Fc = kﬂ Z [ QdQ{In[l - A+,,‘ exi<— ,_,21 >:| + In|:1 - D12 eX[<—M>:”, (5)
4 ==, Jo EN.i =5

wheresS is the area of each substrajeis the in-plane wave vector of fluctuatiorﬁgl?,- and=;? stand forf,;f + ¢*and

-2 2 ; _ uzvi _ 1=V A_i+exp(=2l/Ey,) _ Ei'-Ex _ Y,
§1° + g7, respectively, andv-; = J5y andD; = 13y 1oa -, ex2i/=, ) WhereU; = REE=R andV; =
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Note that all information on the mean-field profile of the is approximately given by
ordering is contained ir, the thickness of the wetting kTS Evh, — & 51
layer, and inY;, the discontinuity of the derivative of the .22 L exp(— ) @
normal modes at the phase boundary. 2mén ol Eyly + &7 EN.x2
According to its structure, the first term in Eq. (5) cor-
responds to the interaction between the wall and the pha
boundary, and the second one represents the interacti
between the two phase boundaries. The former is domi-
nant for two reasons: (i) the distance between the wall anti
the phase boundary, is usually far smaller than the dis-
tance between the phase boundarigs; 2/, and (ii) the kTSZ(3)
nematic wetting layer is characterized by long-range corre- T4z (8)
lations and long-range fluctuation-induced force, whereas
correlations in the isotropic core are short ranged and so Where{ is the Riemann zeta function. This long-range
the fluctuation-induced force [5]. interaction is attractive, which can again be interpreted
There are three types of contributions to the interactiodn terms of (dis)similarity of boundary conditions. In
between the wall and the phase boundary, and thetp€ isotropic phase, director fluctuations are very hard
differ both in sign and in range. Let us first discusscompared to the nematic phase, and the lowest normal
the interaction induced by fluctuations of the degreegmodes are actually confined to the nematic layer and
of order, which are characterized by finite correlationPractically do not penetrate the isotropic core [8]. Thus
lengths in both nematic and isotropic phas@s, is finite  the effective boundary condition at the phase boundary is
and nega‘[ive1 and3+’0 also turns out to be negative very similar to Strong anChoring at the solid Substrate, and
in the whole range of applicability of the parabolic the force mediated by director fluctuations is attractive.
approximation. This implies that the fluctuations of the The force between the wall and the phase boundary,
degree of order give rise to a repulsion between the waNvhich is dominated by long-range director modes’ attrac-

and the phase boundary, which can be estimated by tion, is not directly measurable because the thickness of
-1 -1 the wetting layer is not a free parameter. Its contribution
kTS  éno — &1 — Yo exy{— 21 ) 6)

d is rather weak, because the correlation length of
ﬁlaxial modes in the nematic phase is very short.

On the other hand, the correlation length of director
uctuations in the nematic phase is infinite, and the leading
erm of interaction induced by the two modes reads

to the total wall-to-wall force is determined by the func-

dménol Eno + &7+ Yo Eno tional dependence dfon sample thickness and reads
and is short ranged. The sign of interaction can be un- kTS¢(3) ol
derstood by recognizing that the fluctuation-induced force Fo = — o l? od (9)

between two objects that both impose either Dirichlet or
Neumann boundary conditions is attractive, whereas imNow [ is a decreasing function ef, because the nematic
the case of Dirichlet boundary conditions at one objecbrder in each wetting layer is stabilized both by nearby
and Neumann at the other it is repulsive [3,4]. In theand distant walls, and the larger the distance between
strong anchoring limit, fluctuations of the degree of or-them, the thinner the wetting layers. This reverses
der must vanish at the wall—a Dirichlet boundary condi-the sign of interaction: attraction between the wall and
tion. On the other hand, on crossing the phase boundatye phase boundary results in repulsion between the
the derivative of the fluctuations must change discontinuwalls. In the mean-field theorypl/dd = —constX
ously, which is qualitatively closer to a Neumann than toexp(—d/&;) for large d’s [10], which means that the
a Dirichlet condition; after all, the wetting-specific soft fluctuation-induced force is short ranged and characterized
mode is localized at the phase boundary [8] so that théy the correlation lengthé;. Let us stress that the
fluctuations are largest there. Therefore, the fluctuationsubdominant attractive force caused by the interaction
of the degree of order within the wetting layer experiencebetween the phase boundaries falls off twice as fast, i.e.,
mixed boundary conditions, and that is why the resultingas ex§—2d/&;).
interaction is repulsive. All in all, the pseudo-Casimir force in the parane-
A similar argument applies to the interaction inducedmatic phase is dominated by the repulsion originating in
by biaxial fluctuations. Sinc&y +; < &, the lowest the long-range interaction between the substrate and the
normal modes are restricted to the isotropic core: in th@phase boundary. To establish its relevance for the total
nematic wetting layer, they decay exponentially with thestructural force it should be compared to the mean-field
distance from the phase boundary. This means that withimteraction resulting from the inhomogeneity of the order-
the wetting layer, the amplitude of biaxial fluctuations ising itself, which is attractive and decays asymptotically
largest at the phase boundary [8], so that the effect ofs expp—d/&;) [13]. This brings us to an important con-
the boundary condition that the fluctuations be smootftlusion: the ranges of fluctuation-induced and mean-field
at z = [ is quite different from the strong anchoring forces in the paranematic phase are identical, which is quite
imposed by the wall. The resulting repulsive interactionunique. Their relative magnitude is primarily determined
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by the ratio of their energy scalesl'/ Sy, L&, whereSy; Fo|Fye 0.4 : : : |
is the unscaled value of the degree of order in the bulk ne-
matic phase at the nematic-isotropic transition. In typical ozl
materials such as 5CB, this ratio is close to 1, so that in ' 5 10 5 s
principle the two forces are comparable. \ \ \
This rough estimate is confirmed by numerical analysis 0
(Fig. 2). The fluctuation-induced force is indeed repul- L \
sive, and its magnitude typically ranges from 15% to 20% 02| o
of the mean-field attraction. However, in the vicinity of
the metastability limit of the paranematic phase—below 04 2

which the system can exist only in the nematic state— 1 .02 104 106 1.08 1.1

the pseudo-Casimir force becomes attractive and even di- 0

verges at the very limit. It turns out that the crossover . o ]
and the divergence are due to the attraction between t dG. 2. Ratio of the fluctuation-induced and the mean-field

. . . s orces as a function of temperature fay&, = 8.5,9, 10, 12,
phase boundaries, which is not surprising: close to th nd «. The relative magnitude of the Casimir interaction

metastability limit the wetting layers no longer occupy atypically ranges betweer0.15 and —0.2 except in the vicinity
small part of the total volume and the distance betweemnf the metastability limit of the paranematic phase, where it

the phase boundaries is comparable to the distance bbecomes positive and eventually diverges at the very limit.
tween the wall and the phase boundary.
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